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LARGE-TIME BEHAVIOR 
OF DETERMINISTIC PARTICLE APPROXIMATIONS 

TO THE NAVIER-STOKES EQUATIONS 

GEORGES-HENRI COTTET 

ABSTRACT. We prove that for a class of deterministic vortex methods for the 
Navier-Stokes equations in two dimensions, the numerical solution decays for 
large time with the same rate as the exact solution. We substantiate our re- 
sult with numerical experiments and with a remark concerning the problem of 
reinitialization of a distribution of particles. 

1. INTRODUCTION 

Starting from the original particle methods for purely convective problems, 
deterministic particle methods have been designed to handle diffusion pertur- 
bations of these problems. The diffusion is dealt with by modifying the weights 
of the particles, while these particles still move according to the convection 
part of the equation. More precisely, given the vorticity formulation of the 
two-dimensional Navier-Stokes equations in the whole space: 

( 1. 1 ) 0<) t + V (uwi) - yAwJ = 0, 

(1.2) w((., 0) = No 
(1.3) divu =0, 
(1.4) curl u = 

(1.5) Jul ? 0, 

the idea is to approximate the vorticity field by a set of particles: 

w)(x, t) w(t (x, t) = E v1w1(t)5(x - xj (t)) 

In the above equation v1 are the volumes of the particles, which remain con- 
stant due to the incompressibility of the flow, and wo are the local values of the 
vorticity. The initial locations of the particles are typically along a Cartesian 
mesh, which gives 

xj O h , v 2 , zj(0) = coo(jh) for j e Z2 
xj(0) =jh, vj1= h, w1j(0) = w0(jh) for j EZ2. 
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Then xi and cc) evolve according to the laws: 

Xj(t) = u(xj(t), t), 6j (t) = 2 v Vk(k- Wj)A,(Xk -j) ) I EZ2. 
k 

A possible way to reconstruct the velocity field u from the set of particles is 
to use the Biot-Savart law, involving eventually a regularization of the measure 
vorticity. As for the kernel Ae, it is obtained through 

A (x) = IC2A (X ) 

where A is a symmetric kernel satisfying 

A(x) = A(jxl); Jx2A(x) dx = 2, i = 1, 2. 

For the derivation of such approximations to the diffusion and their analysis in 
the linear case we refer to [5]. 

This paper is concerned with the problem of the convergence of such ap- 
proximations to the Navier-Stokes equations for large time. The corresponding 
problem for finite time is analyzed elsewhere (see [3]). It is well known (see [6] 
for instance) that the solutions of the continuous problem (1.1 )-(1.5) exhibit a 
decay for large time like 1 /it for the enstrophy. Our goal here is to prove 
that the same result holds for the above numerical method, independently of 
the discretization parameters. The result is also largely independent of the way 
the velocity is reconstructed. Together with [3], this proves the convergence of 
the deterministic particle methods for t E [0, +oo). 

For our asymptotic result to be valid, we need some assumptions, some of 
them essential, the others for technical simplicity. Let us list these assumptions. 

Hi. A > 0 and A has compact support. 

The positivity of the kernel is for us the simplest way to ensure the decay 
of the enstrophy. This excludes kernels which lead to approximation to the 
diffusion of order 4 or above. However, it is possible to formulate an alternative 
sufficient condition in terms of the Fourier transform of the kernel which allows 
the use of a wider class of kernels. For simplicity we omit this possibility here. 

We also assume that the dispersion of the particles can be controlled in some 
sense uniformly in time. More precisely: 

H2. There exist constants cl, c > 0 and, for all time, a permutation P in 2 

such that 

cl JP(k)h - P(j)h j < IXk(t) - 
Xj(t) I 

< cl TP(k)h - P(j)hI, t > 0, j, k E Z2. 
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The assumption H2 is essential in the proof. In ?2 we will comment on the 
relevance of this assumption. Finally, we assume that 

H3. cc) has compact support. 

This assumption significantly simplifies the proof. However, the fact that the 
size of this support does not appear in the constants involved in the estimates 
indicates that the assumption is not essential. Related to this assumption we 
also assume that the vorticity carried by particles initially outside a bounded 
domain surrounding this support is zero. If K is the size of this domain, the 
diffusion scheme now reads as 

(1.6) 6 ( ) { ve Ekh (Ok-x ) if jjhj < K, 

( otherwise. 

We assume that the disc of radius K is invariant under the reorderings P intro- 
duced in H2. An interpretation of (1.6) is that cc = 0 is imposed as an artificial 
boundary condition at the ends of the computational domain. This must be con- 
trasted with the usual way of dealing with these methods: in general, particles 
are only considered inside the computational domain, and the resulting artificial 
boundary condition is more likely (although not exactly) a homogeneous Neu- 
mann boundary condition on the vorticity. We will comment on the differences 
between both approaches when we come to the numerical experiments. We can 
now state our result. 

Theorem. Under the assumptions HI to H3, there exists a constant C depending 

only on c1 and 11 cc11 1 = Ek h2I wOk (O) I such that the solution of (1.6) satisfies 

(1.7) Zh2 Iwtj (t2 < ?C, t> 1, 

for e small enough and h <,el+', S > 0. 

As mentioned earlier, our proof is very much conditioned by the assumption 
H2, although we believe that this is only for technical reasons. In general, 
this assumption does not seem to be satisfied for all time, unless something 
special is done to prevent particles from moving too far apart or too close 
together. In other words, for our result to be a real long-time result, we need a 
reinitialization process which is both consistent and enstrophy-decreasing. The 
following section describes such an algorithm. 

In [4], the authors prove for a class of finite element methods error estimates 
that are valid for all times. In contrast, our result and proof are more in the 
spirit of [6]. The proof consists in using H2 in order to reduce our problem to 
one on a fixed grid, and then to translate M. E. Schoenbeck's Fourier techniques 
into a discrete Fourier analysis on this grid. As a matter of fact, it follows in 
particular from our analysis that the long-time decay (1.7) extends to any finite 
difference scheme, as long as the convective term V(uwo) is treated in such a 

way that its contribution to the L2 norm of the vorticity vanishes. 
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An outline of the paper is as follows. In ?2 we discuss the assumption H2 and 
we define a reinitialization algorithm which does not increase the enstrophy. We 
also give an intermediate result based on quadrature formulas. In ?3 we prove 
our theorem. Section 4 is finally devoted to numerical illustrations of our result 
and some practical conclusions for the implementation of the method. 

2. Two INTERMEDIATE RESULTS AND A REINITIALIZATION ALGORITHM 

WHICH DOES NOT INCREASE THE ENSTROPHY 

To begin with, let us discuss the assumption H2. Consider first the case where 
we enforce P =Id. It is clear that the dispersion of the particles (that is, the 
maximum among the quantities Ixk(t)-xj(t)/1Ikh-jhI, Ikh-jhI/Ixk(t)-xj(t)t) 
is controlled by the derivatives of the velocity, in a way that is exponential in 
time. This obviously makes the assumption H2 hard to satisfy. Even if we 
assume a decay of the first derivatives of the velocity like 1//(vt) (which 
is not anyway a direct consequence of our result), this exponential growth of 
the dispersion can only be improved into a polynomial growth. Although the 
permutation ' adds some flexibility (which in practice can be useful; see nu- 
merical examples in ?4), it seems difficult to predict in general that H2 will be 
satisfied, unless something is done to prevent the growth in the dispersion. The 
most natural thing is to reinitialize the distribution of particles along a uniform 
mesh after a fixed amount of time independent of the numerical parameters. 
This in turn raises the problem of finding a reinitialization process which does 
not deteriorate the decay of the enstrophy. We describe such a method, which 
is inspired from recent works in Particle-In-Cell methods. The problem can be 
stated as follows: given a distribution of particles (xp, p)p , find a new distri- 
bution on the uniform mesh (ph, Cop) consistent with the original distribution 
and such that 

E h lOp 1 <, h 2 
(p 12 

p p 

For this we need an intermediate grid with grid size ?I > h. Throughout this 
section, indices j, k refer to this grid, while indices p, q refer to the particles. 
Associated with the grid just introduced, we consider a symmetric basis function 
q, that is, a function such that 

XX -X 2 
(2.1) =1 forallxeR . 

Following [I], we assign the vorticity on the grid by defining 

(2.2) flj 1 = 'h2q ( ) i wc= - 
I 

h2wopq (XJ ). 
p 

17I fp 
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The coefficients /3, are clearly an approximation of 52 , which makes the above 
assignment scheme consistent. Then we go back to the particles by setting 

2 xj -Ph fl/o 
1/2 

(2.3) ' 

which is also a consistent way of computing the value of the vorticity at the 
points ph. The above process introduces some diffusion, but certainly no os- 
cillations: we can prove 

Proposition. The reinitialization process defined by (2.2), (2.3) is stable in the 
following sense: 

(2.4) Zh2 p 12 < E h2 1 (p 12. 
p p 

Proof. First we write, using (2.3), 

2opt = Zhjwkykk (P X) (ph -x ) 
jk 

Writing then |[co4 I' < 2 (?Yj 12 + 1Ykj2) yields 

i (pl E lyjojl X ( 3 0 

12 (ph - xj h 

where for the last inequality we have used (2.1). Using now the definitions of 
flj, fl/, y., we obtain 

(2.5) h h2o6 12 < Z 12 2 E 23 
p i 

Next (2.2) gives 

E l@ l2 E 4 E X i- (x Xi Z'2 h 
~k ~ p qsXP ji(qj 

I j J pq 

? Zh2wt 2 1 Sh2 (XpXi$(Xq Xj) 
p j 

But from (2.2) we have 

Eh2 ( j) xq Xj ( )=fl X(P Xj) 

q 
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and thus 

I Pj '6 :h Jo P' X X 

E|~~~~ 
'1 

p2t1E(p 
X)E2Z 

which along with (2.5) proves (2.4). o 

Let us now give an intermediate result based on quadrature estimates. 

Lemma 1. For j, / E Z2, e small enough, and h <( l+s, thefollowing estimates 
hold: 

(2.6) Lh2(kih - jih)2 A (c1 (kh - jh)) > Cce2 

k 

-2 2 h 2 

e6 L h |sin ^2 (ki - ji, l)| A, (c, (kh - jh)) 

(2.7) kC~2 % :~7 

(2.7) ~~~> Ct 1112 if ill < e 
E-2 otherwise. 

Proof. We first consider the continuous integral which is behind the discrete 
sum in the left-hand side of (2.6). We get immediately from the definition of 

AC 

j(x - jih) A,(c (x - jh)) dx = 2c1 4 2 jE , = 1, 2. 

As a result, the standard estimates for the midpoint quadrature rule give for 
m > 2: 

Z h2(kih - jih)2A,(cj (kh - jh)) - 2cT4c2 
k 

< Cmhm[V2 AgI,m, +eIAeIm l I + IA,i 2,1] . 

Since 1A.Ip 1 = cpe , we have 

| h2(kih - ih )2A, (cl (kh - jh)) - 2c -4c2 < Cm h%m em 
k 

and (2.6) will be satisfied as soon as e is small enough and h < e. For (2.7) 
we need to consider 

(1) =-2 |2 sin (y - x, 1)12A.(c (y - x)) dy. 

If p is the finite size of the support of A, the integral is only over y such that 
lY - xl < pc . Using the change of variables y - x = cz, we obtain 

1(1) -2 /1 sin 2 (z, 61) 12A(c, z) dz. 
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If we set ci = a, we have, for tat < 7r/4p and lzl < p, Isin'(z, el)l > 

(z, a)t/7r and therefore 

I(l) > Cc-2 JA(c Z)(z12a1 + Z2 a2 + 2z z2a a2) dz, 

which in view of the properties of A yields 

(2.8) I(l) > 2Cc-4 1ta2 = C'1112 -2 for / < 7r/4pc. 

Next, for tat > 7r/(4p), we can rewrite 

tsin 
I 

(z, )= 2 (1 - cos(z, a)). 

Therefore, on the one hand we get 

limf A(c1z)Isin.I(z, a)12 dz = 2fA(c z) dz. 

On the other hand, the above integral clearly never takes the value 0. As a 
result, we can write 

fA(c1z)IsinI(z, a)t2dz > C, lal > 7/4, 

or, equivalently, 

(2.9) I(l)? Ce-2 forI > 7r/(4pe). 

Finally, the estimates (2.7) on the discrete sums can be deduced from their ana- 
logue (2.8) and (2.9) on the continuous integrals by applying the same quadra- 
ture argument as previously. n 

3. PROOF OF THE THEOREM 

For the sake of simplicity in the notations we give the proof in the case T' 
Id. The general case can be recovered through straightforward modifications. 
We first introduce the tools and notations needed in the proof. We rewrite the 
constant K introduced in (1.6) as K = 7rM and we assume that 7r(M+ 1)/h - 
1/2 is an integer. We then set 

h N 7 (M + l) 1 
(M+ 1)' h 2 

Next we define the discrete Fourier coefficients: 

(3.1) 6c . h= Zh2wkexp(ia(I, k)), 1 E [-N, N]2. 
k 

For j E Z2 we denote by j' the only integer such that j'h - jh E 27r(M+ 1)Z2 
and lj'h I < 7r(M + 1) . The following classical result gives the Parseval identity 
and sets up the rules for computing the inverse Fourier transform. 
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Lemma 2. If wc = 0 for jjhj > irM, then we have 

(3.2) co= 2(M + 1)2 E 6)1 exp(-ia(l, j)), 

(3.3) ~ h owi = 1 1612 E j 7ri2(M+ 1)2 I/IN 

Proof. Substituting (3.1) in the right-hand side of (3.2) gives 

E 6)1exp(-ia (l, j)) = E h2k exp(ia(l, k - j)). 
IlI<N k Il<N 

If the components of a(k - j) are not multiples of 27r, then 

Z h 2kexp(ia(l, k- j)) 
111 <N 

- sin a (N + 1/2)(k1 - ij) sin a (N + 1/2)(k2 -12) - 

- sin 2- (kl - ji ) sin a (k2 - i2) 

and, by the assumption on the support of cc, the only k not falling in this case 
and with O0k # 0 is j'. As a result 

E 61 exp(- ia(l, j)) = (2N - 1)2);,j 
1I1<N 

which proves (3.2). (3.3) is proved in the same way. 0 

In the sequel we will use the notations Q = 7i 2(M + 1) 2 and Ajk = 

A,(cI (kh - jh)) . The next step is to prove 

Lemma 3. Under the assumption of Lemma 1 and HI, H2, we have for e small 
enough 

1((@k -(j)2 A, (Xk Xj) 

(3.4) 
k 2~~~~~~~~~~~~ 

2Q (N1)2 E _'1i2 E na (kj1)| 

S (wk 2 - w1)siA jX(k - j,) 

l k 
Proof. We develop the left-hand side of (3.4) after substituting (3.2). First we 
observe that H1 implies that A is a decreasing function of the modulus of the 
argument. Therefore, in view of H2, 

Ae(Xk - Xj) > Ajk, 

and by (3.2), 

(ik/ - wji) Ae (xk - x) 

> Q2 id)comexp(-ia(I, 1 - m)) 
l,m 
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Let aik be the right-hand side of (3.5). We now introduce the following addi- 
tional notations: 

S1 = {i E Z2, IihI <?r(M + 1) - h/2 = Nh}, 

S2 = {jEZ2, Ijhl <?r(M+2)}; 

a little reflection will show that in the summation of the ajk for j E S1 and 
k E S2 there is actually no repetition of the corresponding indices j', k', and 
therefore we can use that sum to evaluate the left-hand side of (3.4). If j E S1I 
k E S2, then either k E S1, in which case j' = j, k' = k, or k E S2 - S1 . In 
the latter case we have ir(M+ 1) < Ik'hl < 7r(M+ 3/2), and, by the assumption 
on the support of cl), (lk' = 0. On the other hand, if Ij'hI > 7rM, we have 
cl), = 0, while if Ij'hI < 7M, then Ijh - khl > 7r. Now we use assumption 
H2 to deduce that jx1 - Xkj > C7i and therefore Ae(Xj - xk) = 0 if e is small 
enough. To sum up, we have 

jeSS, keS1 S j =j, k'=k, 
jEST, kE S2- S1 (wk' - jI)A,(Xk - Xj) = 0. 

Therefore, 

Z(wk-j)2 Ae(Xk-Xj) > E ajk. 
jk jES1, kES2 

We next observe that if we denote by A l. the term between braces in (3.5), 

then ZkEs A'J is independent of j E S1 if e is small enough. The reason is 
that 'jk = 0 if c1 ]j - klh > 1 and, in particular, for e small enough, as soon 
as j E S1, k 0 S2 . As a result, 

(3.6) Alm Alm 
keS2 k 

and the invariance under translation of (k - j) proves our assertion. If we 
denote by flim the quantity in (3.6), we therefore have 

Z,(Ok %) - (xk- )> X E 1i mfllm E exp(-ia( j, 1-r)). 
kj 1, m jES1 

Finally, owing to the definition of S1, the sum with respect to j in the right- 
hand side above is 0, unless I = m. This yields 

,(Wk -Zj N A,(Xk-XJ) ? Q (2N- 1) E llll 
k,j c 

which can be rewritten as (3.4). 11 
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This allows us now to prove the following key result: 

Lemma 4. Under the assumptions of Lemma 3 there exists a constant CO de- 
pending only on c1 such that 

d , I'2 + C Qv inf(l2 M'e )|16,I < 0. 
l , 

Proof. Starting from (1.6), we observe that for all indices j we have 

) -2 Z(%c j)- w j A,(Xk - x) 
k 

Therefore, (3.3) yields 

K2 d 
h216i,K12 

I d 
E 2lzj 2 

(3.8) = Z h4(wOk- w)jAe(Xk-X1) 
k,j 

= -2 E h ((Ok - j) A8(Xk -Xj), 
k, 

where for the last equality we have used the symmetry of the kernel Ag. The 
above right-hand side gives the rate of dissipation obtained in the numerical 
method. Our goal here is to relate it to the one corresponding to the continuous 
equations. In view of (3.4) we have to estimate for any fixed index / 

'=E sin 2(k-j, 2jk 
k 

But it results directly from Lemma 1, estimate (2.7), that 

I > Ch -2inf(12M-2, ,-2) > Ch-22n inf(l 2M2 -2) 

It remains then to substitute the above inequality in (3.4), then in the right-hand 
side of (3.8), to get the desired inequality. o 

An interpretation of the above result is that the minimum scale e introduced 
in the numerical method results in a limitation of the rate of dissipation. How- 
ever, this limitation does not affect the long-time behavior of the numerical 
solution, as will be seen now. We are in a situation where we can use the nice 
trick introduced in [6] to prove our theorem. We write C1 = CO/Q and we 
introduce a last notation: 

L={ lEZ ,Ii>? }, L =Z -L. 

For 1 e L we have 

inf(l2, M 282) > inf( 2 M2-2) > 2 
cvt' / C1 vt 
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if t > 1 and e is small enough. Therefore, we can write 

Ei a.i12 inf(l , M2e) > E |)Z if(12 M2-2) > 2 1 1-A12 

I t~~~~~EL CI IEL 

(3.9) >C 2t (O (O2ltl 
I 

L I 1L' 

2 2 - ILI m 1ax1iiI2] 

Of course, IL'j < 2/C1vt; on the other hand, 

maxI ji1 < EZh2ikl 
k 

In order to relate the above right-hand side to w%o 1I , we define 

I 1 if wi >0, 

Si = 4 O if wj = 0, 

-I if .j< 0. 

(1.6) implies that, for all j, 

d V 
2 j h)sjA(Xk -Xj) dt j1w11 = =ii 8 Z h(w)k x1) 

k 

Using again the symmetry of the kernel A, we then obtain 

dt - l jl e2 k hj)(Sj - Sk)Ae(Xk - Xj) < 0 
i ~~~~jk 

which gives 

E? h2 () < a? h tc,j(0)l = IIl)ollI 
i I 

Hence, (3.9) now yields 

E 11,21-112 > 2 E I 
- 

12 _ 4 1 l2 / C~~1v (C1vt) 

If we set y(t) = t2 >j j61(t)j2, we get from (3.7) 

Y< 
4 

co 1ol2l 

Therefore, we get for t > 1 

E |I() ( t )12 < CQ 
2 

0 vt 

and using finally (3.3) proves our decay property (1.7). 
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4. NUMERICAL ILLUSTRATIONS 

We have performed experiments with the following initial vorticity: 

0 ( - lxl 2 )3 if lxl < 1, 
cl) (x) = 

0 O otherwise. 

The particles were initially lying on a uniform mesh with h = .15 inside the disc 
of radius 1.5, resulting in 316 particles. We have set e = 2h, and have chosen 

2 3 A(r) = 16/T(1 + r 3. For the time discretization of the various ordinary 
differential equations involved in the method, we have used a Runge-Kutta 
method of order 4 with At = 1 . 

In the first experiment we have implemented the method in the usual way, 
which slightly differs from (1.6), that is, we have simply solved for all j: 

(4.1) 6cs(t) = 2 ( h 2wjk-w )Ae(xk Xi) 

g- 6 

.. .. . .. ... .. . .. ...... .. .. ... .. ..- . . . ... . . 

7 . ..... .......................... .......... .......................... .................. . 

, ......... .. . ....... . . ...... / . ....... . ...... 

7...... ........... ................................. ................ ...... .. ................ ......... . ......_ 

4 . ,,,,_.., ........,,,,,,, ..... .. ....... ............. ....... .. .............. ......... ..............'''''''''''''''''''''''' 

34 ....... .... ........ =........... ........................... ...................................... 

O 10 20 30 40 50 60 70 80 90 100 

tinie 

FIGURE 1 

( h2 hk o1(t)i 2) l vs time for v = 10-3 (dotted line) and v = 

2. 10-3 

Figure 1 represents the increase of (EZi h2 1 j(t) 2) 1 as a function of time, 

for two small values of the viscosity, v = 10- and v = 2 . 10 3. We observe 
that the linear growth predicted as a lower bound and the linear dependence 
on v are quite well fitted, which is not surprising since, owing to the radial 
symmetry of the initial vorticity, the continuous equation behaves as a simple 
heat equation. We also must point out that no reinitialization has been needed. 
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9 . . , * * . . , , , . 

10. 
. ... . 

, , _ 

.. . . .....--......._,'.,. ....... ......... 

. ............... .............. ..................... ...... ........... , 
60 v ,---~~~~~~~~~~... .. ... . ............... .. .. ... . ................ ........ 

5 . . . . . . 
. . 

. . . . . . . . . . . . . 
... .. .. 

. 
.. . . . . . . . . . . . . . . . . . 

... .,. 

. ... .. .. . . .. . . . 

... 

. . . . . 

4 .... .................................. ....... ............................................. ........ ........ ................................. .............. 

* ~ 7 

3 4 ,............................ .. ............... ... .................... ...........;................ ....... ........ 

2 ;_ _ ____;_ ; ; 
0 2 4 6 8 10 12 14 16 18 20 

time 

FIGURE 2 
Comparison of (1.6) (+) and (4.1) (o) for v = 10-2 

The reason is probably that, again owing to the radial symmetry of the vorticity, 
the particle paths are circular and a reordering ' which follows these rotations 
will satisfy assumption H2. 

In Figure 2 we have considered a much larger value of the viscosity (v = .01, 
the time step for the resolution of the diffusion had to be reduced to .1) to show 
the boundary effects on (4.1) as compared to (1.6). We see that (1.6) and (4.1) 
behave more or less equivalently, until the spreading of the vorticity reaches the 
boundary of the computational domain, which occurs very early for this value 
of v. Passed this time, the enstrophy computed corresponding to the scheme 
(4.1) begins decaying more slowly (and actually completely stops decaying after 
a while), while the decay increases with (1.6). This confirms that it is necessary 
to consider the diffusion scheme in the form (1.6) to obtain a decay property 
for all time. Also the speeding up of this decay can be interpreted by the fact 
that our estimates involve the Li norm of the vorticity. For a positive vorticity, 
for instance, this quantity is conserved by (1.6) until the vorticity reaches the 
boundary, and then decays. As for the behavior of (4.1), the saturation in 
the decay of the enstrophy can be easily explained by the fact that, since the 
vorticity in the present experiments is positive and the method (4.1), unlike 
(1.6), conserves the overall mass of the particles, we have 

h h2 l ? K2 >K l (Z h2cWj(t) = K l 0112 
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A practical conclusion is that for a given desired accuracy 3, the estimate (1.7) 
can be used to determine the time T* passed which 

) 1/2 

(h2w1t) +j lt(t)lL2 <?; 
j~~~ 

then the size of the computational domain must be adjusted so that the vorticity 
is accurately approximated in [0, T*]. Roughly speaking, we must have K 
V/zT ~ 

- 
, that is, the size of the computational domain is independent of 

the viscosity. 
We finally discuss the case of a nonsmooth, nonradial vorticity. From the 

analysis in ?3, it is quite clear that the rate of dissipation can exceed the one 
expected in the right-hand side of (1.7), if the vorticity is concentrated around 
high wave numbers, that is, if the vorticity is not smooth. In practice, a natural 
way to enforce a nonsmooth vorticity through the nonlinear part of the equation 
is to supplement (1.1)-(1.5) with a forcing term f which is itself not smooth. 
As for the particle method, since the values of the weights are not affected 
by the convection, the mechanism for such an acceleration of the dissipation 
must involve the deformation of the Lagrangian mesh appearing in the diffusion 
formula (1.6). Actually, it can be observed that this deformation eventually 
leads to a local value of the viscosity which can exceed v significantly (see [2] for 
a discussion of this point). We have performed experiments with smooth and 
nonsmooth forcing terms. To preserve a decay of the enstrophy like in (1.7), this 
forcing term must also decay in time. More precisely, it can be proved, for both 
the continuous equation and the particle method, that if IIf(, t) IL2 < a/(Vt2), 

then 

Il0(., t)1|L2 < C/(v 2 t), 

where the constant C depends only on wo and oa. However, Figure 3 illustrates 
the fact that the rate of dissipation greatly depends on whether the forcing is 
smooth or not. We have chosen here two particular choices of f, with support 
in {lxI < 1}, the same L2 norm and mean values 0, one piecewise constant, 
the other random: 

f (x) =1 rand(x) 
1 + vt2' 

f.005IV3-(l + zvt2) if IxI < 1/, 
f2(X) = l -.OOS/A/X1 + Vt2) if 1/V2 < lxI < 1. 

In the above definitions rand is a random generator in [-.5, +.5]. The vis- 
cosity has been set to 2 x 10 . The experiments were performed without 
reinitializations of particles, although the distribution is probably greatly dis- 
torted. This raises the question of whether the assumption H2 is necessary or 
only convenient for technical purposes in the proof. 
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FIGURE 3 

Evolution of the enstrophy for smooth (dotted line) and random 
forcing term 
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